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With aid of the so-called dilation method, a concise formula is obtained for the 
entropy production in the algebraic formulation of quantum dynamical systems. 
In this framework, the initial ergodic state of an external force system plays a 
pivotal role in generating dissipativity as a conditional expectation, The physical 
meaning of van Hove limit is clarified through the scale-changing transforma- 
tion to control transitions between microscopic and macroscopic levels. It plays 
a crucial role in realizing the macroscopic stationarity in the presence of 
microscopic fluctuations as well as in the transition from non-Markovian 
(groupoid) dynamics to Markovian dissipative processes of state changes. The 
extension of the formalism to cases with spatial and internal inhomogeneity is 
indicated in the light of the groupoid dynamical systems and noncommutative 
integration theory, 
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1. I N T R O D U C T I O N  

As is well known,  K u b o ' s  l inear  response  theory ~ al lows one to calculate  
most  effectively t r anspor t  coefficients, the quant i t ies  in t imate ly  related to 
the dissipative aspects  of the nonequ i l ib r ium and irreversible processes.  
Since it is fo rmula ted  in the f ramework  of dynamica l  systems with 
reversible t ime developments ,  however,  the origin of such diss ipat ivi ty  as 
expressed by  the posi t iv i ty  of the t r anspo r t  coefficients has  been ra ther  
myster ious.  (2'3) Fur ther ,  the no t ions  of  en t ropy  and en t ropy  p roduc t ion  
have not  been fo rmula ted  in an explici t  form there, in spite of their  s t rong 
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connection with transport coefficients. The attempt to fill this gap has been 
undertaken in ref. 4 by trying to give a sensible definition of entropy 
production satisfying positivity in the framework of nonlinear response 
theory of quantum dynamical systems. There we encounter two different 
kinds of time averaging procedures, the initial- and final-time averaging, 
which are crucial for ensuring the positivity of entropy production as well 
as the stationarity of the final nonequilibrium state. The aim of the present 
paper is to clarify the physical nature of these time averaging procedures in 
their technical guise, and, by doing so, to clarify the structure of non- 
equilibrium states in their relation to microscopic dynamics. 

For this purpose, it is important to note the close relationship between 
the scale changes of spacetime lengths and such thermodynamic notions as 
temperature and "adiabatic switching procedures," etc. For instance, since 
temperature changes in the opposite direction to the time coordinate in the 
scale change as shown in ref. 5, our macroscopic world with finite tem- 
peratures will be observed by the microscopic observers, if any, in the 
vacuum state at zero temperature. In view of the actual physical world far 
from an equilibrium with a uniform temperature, it would be a very impor- 
tant step in implementing the "unification program" of physics to find the 
connections or transitions among (i) microscopic physics at T-=0K 
described in quantum field theory on the vacuum, (ii) local physics of con- 
densed matter in equilibrium with T 4:0 K treated by statistical mechanics, 
and (iii)the nonequilibrium self-organizing levels with inhomogeneous 
structures in evolution processes. In what follows, we will be concerned 
with the problem of finding some route from the paradigm (ii) toward (iii) 
taking the notion of entropy production as a guiding principle. 

In the next section, we briefly recapitulate the result on the entropy 
production obtained in ref. 4. In Section 3, our time-inhomogeneous system 
under the influence of time-dependent external force will be embedded into 
a larger time-independent system together with the external force driven by 
its own dynamics. This so-called "dilation technique" will be helpful 
in understanding the physical structures involved in the situation under 
consideration. For instance, it clarifies in Section 4 the essential role of the 
scale changing procedure of the van Hove limit. It is important to note that 
the dissipativity associated with nonvanishing entropy production in non- 
equilibrium stationary states means the coexistence of two conflicting 
aspects, the stationarity of the state on one hand and the constant increase 
in the entropy of the system on the other hand. What reconciles this con- 
flict is just the discrimination of two levels, microscopic and macroscopic, 
interconnected through the time-scale change in van Hove limit. In the final 
section, Section 5, we discuss the problem of the inhomogeneous substruc- 
tures inherent in nonequilibrium stationarity from the viewpoint of a multi- 
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pie-reservoir system. ~6~ For the consistent treatment of spacetime non- 
equilibrium phenomena such as inhomogeneous temperature distributions, 
thermal diffusions, etc., quantum-field-theoretic extension of the present 
framework in combination with the continuous version of multiple- 
reservoir systems seems to be very important. From this viewpoint, 
possible relevance of the notion of groupoid dynamical systems (7'8}'2 to the 
present context is indicated through the reformulation of the obtained 
results in terms of groupoid notations. 

2. RESUME ON ENTROPY PRODUCTION IN 
Q U A N T U M  D Y N A M I C A L  SYSTEMS 

2.1, Entropy Product ion in General Framework of 
Nonl inear  Response Theory 

Let the observables and dynamics of our object system be described by 
an algebra 21 (to be specified as a C*-algebra when necessary) and a one- 
parameter automorphism group ~, on it (assumed to be strongly con- 
tinuous in the C*-algebra context). In this general setup, the notion of the 
temperature equilibrium states has been successfully formulated (1~ in 
terms of the KMS condition. In view of the zeroth law of thermodynamics 
expressing the stability of the equilibrium states, we adopt here the view- 
point that the temperature equilibrium should be represented by an ergodic 
KMS state (nonergodic KMS states will correspond to mixed thermo- 
dynamic phases or metastable states). 

Then, any other states outside this category would be interpreted as 
the nonequilibrium ones from this standpoint. Obviously, such an "abstract 
definition" in a negative expression cannot convey any positive messages 
about the dynamic aspects of nonequilibrium in the actual physical world. 
In order to avoid this kind of a priori definition, we consider here the 
"adiabatic switching procedure" to creat a nonequilibrium state from a 
temperature equilibrium state (o~ prepared at "infinite past t o ~ - o o "  by 
perturbing the system with external force Z(t)=-()~(t), . . . ,  X,(t)).  If Z( t )  
couples to the system variable & _= (A1 ..... An), Ate g l, through a coupling 
Hamiltonian Hx(t ) given by 

Hz(t)  = -r . ?4(t) =- - ~  A,X, ( t )  (2.1) 
i 

2 See ref. 9 for a recent overview. 
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the time-dependent perturbed dynamics of the system is described by a 
family of automorphisms %,;• on 9.1 characterized by the equation 

d 
%,,• = %,,;• + [ iH,( t ) ,  B]) (2.2) 

together with the initial condition cq.,_s= Ida.  Here 6 is the infinitesimal 
generator of the unperturbed dynamics 7,, 

d 
oq(B) = st o 6(B) (2.3) 

defined on some dense subset of observables B in 9I. The solution of this 
equation can be expressed for an arbitrary observable B e 91 as 

%,,;• = ~ ~[U(t, s; ~ ) *  :q(B) U(t, s; X)] (2.4) 

in terms of the "propagator" U(t, s; X) in the interaction picture: 

U ( t , s ; N ) = T e x p { i f j & ~ ( ~ ) . ~ ( ~ ) }  (2.5) 

On the basis of the formula due to Ichiyanagi (12) relating the external 
force to the relative entropy (~) between the initial state (p, =,0 =- c% and the 
state (p, = o)~o cq0,, at present time t, 

s(~o,I ~o,0 = toe) = B ds~o,(a(~)).N(s) (2.6) 
to 

"microscopic" entropy production P(t, t o ;Z ) ,  (lal and mean entropy 
production p,(4) are defined, respectively, by 

d 
P(t,  to; ~ ) -  7 s(q~,l co~) 

= p~o,(6(~)) �9 x ( 0  

- fi(,~ ) ( t ) .  N( t )  (2.7) 

~ 

P -  lira l ~ r d t  lim d t o P ( t + t o ,  t o ;N)  
r ~  T3o r o ~  - to  

lim 1 lim I ~o = dtoS(~or+,olP,o=co~)>~O (2.8) 
T-, ~v T To~ ~ -Too J-To 
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The operator ~ in (2.7) is the current operator conjugate to the external 
force X(t) defined by 

,D = ,5(A) (2.9) 

Although the relative entropy S((p, j o)~) is always nonnegative, ~t3) the 
"microscopic" entropy production P(t, to; ~)  in (2.7) may become tem- 
porarily negative and the first limit, initial time average, is essential for the 
positivity of the mean entropy production /5, (2.8). The latter limit is 
important for attaining the stationarity of the final state. Owing to their 
technical nature, the physical meaning of these limits may not be clear at 
this stage. We will see in the following their crucial roles in the transitions 
from the regimes of reversible dynamical systems to the regimes charac- 
terized by the nonequilibrium stationary structures and their evolution 
processes in the real physical world. 

2.2. Init ial  and Final L o n g - T i m e  Averages  and 
A l m o s t  Per iod ic i ty  

In order for these two limiting procedures to be meaningful, we need 
first to give some suitable characterizations to the external force N(t). In 
Kubo's linear response theory, for instance, it is customary to choose 
periodic perturbations (with some damping factor). On the other hand, if 
the external force X(t) is taken as random noise, then our formulation 
reduces to the standard stochastic process approach. In the former case, it 
would be difficult to get out of thermodynamic branches due to the 
stability property of equilibrium states, II1~ and the physical origin of 
dissipativity is liable to be missed in the formal procedure of linear 
approximation/3~ As for the latter case, dynamics of the system is described 
from the beginning by an irreversible stochastic process with dissipativity, 
but the probabilistic law governing the noise is just an input brought into 
the theory by hand. 

If we want to seek the dynamical origin of dissipativity and the natural 
framework accommodating the nonequilibrium structure belonging to non- 
thermodynamic branches, what is most crucial is to find some interpolating 
bridges between these two extreme opposite cases, (periodic regularity) vs. 
(chaotic randomness). Although the traditional branches of physics have 
covered both of these extremes, the intermediate regions remain to be 
cultivated. In this respect, the notion of almost periodicity (e.g., refs. 14 and 
15) is very remarkable as it encompasses some of the most important 
aspects of the "complexity" intervening between the above two opposites 
without being absorbed into either one. The pertinence of the choice of 
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almost-periodic perturbation adopted in ref. 4 could most suitably be 
judged from this point of view. 

Although the physical essence of the almost-periodic perturbation can 
be seen in Section 5 from the more general context of groupoid dynamical 
systems (7) in noncommutative integration theory, ~8) we start our discussion, 
just to fix notations, from the definition of almost periodicity/14) in the 
special case of a one-dimensional Abelian group ~ identified with the time 
axis. 

(i) A continuous function X(t) is said to be almost periodic in t e 
if it can be approximated uniformly by linear combinations of the periodic 
functions: X(t) = ~ a k exp ie) k t [convergence in the uniform topology with 
norm NXjh--supt~ IX(t)l ]. By Bochner's theorem, (14~ this is equivalent to 
the condition that the orbit {J(;.;2e[R} of J((t) under the time flow 
X).(t) - X(t  - ~) is precompact in the uniform topology. 

(ii) On the basis of the latter condition, the hull M x  of X(t) is 
defined as the completion of this orbit in the uniform topology 

M x  =- {X;.; 2 e N } (2.10) 

and it turns out to be a compact Abelian group 3 having a unique nor- 
malized Haar measure lz. As a probability measure, p can be interpreted as 
a state on the commutative algebra C(Mx). The time translation group 
acts on M x by extending X~-+ X~. by continuity and each orbit is dense in 
Mx.  Thus, denoting the time flows on the hull M x  and on the algebra 
C(Mx),  respectively, by 2, and a t, 

)v,~ - ~, for ~ e M  x (2.1 la) 

(a , f ) (~)=- f (~  t) for f ~ C ( M x )  (2.11b) 

we obtain an ergodic classical dynamical system (C(Mx),  at, g). Now the 
time dependence of X(t) can be totally absorbed in this time flow a,, and 
the remaining degrees of freedom specifying the function X(t) itself are 
represented by a time-independent function X(~) on M x so that there exists 
a ~o~ ~ M x  satisfying 

X(t) = J((~~ (2.12) 

In view of the expansion X(t) = Zk  ak exp io)kt, a point ~ and the flow 2, 
on the hull M x  can be identified, respectively, with a sequence ~ = (~k), 

3 The multiplication law in M x is given by extending the definition J ( , ,  X , ~ - X s .  ~ on the 
dense subset to the whole M x by continuity. 
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4k e T, on the torus T, and with 2,(~)-= (e i~')*'~k). The function J( then 
corresponds to the sequence (a,) of the expansion coefficients of X(/): 
Jf~(4)=~kak4k. Physically, the variable 4 on the hull M x may be 
interpreted as the microscopic fluctuations of the external force X(t) and its 
coefficients (at) as the time-independent "shape" of X(t) determined by the 
macroscopic experimental setup of the apparatus. 

(iii) Due to the ergodicity of the flow a,, the long-time average 
agrees with the "ensemble average" for any L I function G(~) on Mx: 

1 fsTd t ( ~ _ , ) = j  @(4)G(r (2.13) lira T -  S M~, 

By exploiting some of these facts, it has been shown in ref. 4 that the 
initial time average 

lim dto 
To--co TO 

in (2.8) always exists, being equal to the #-average over the hull M x of 
if the external force Z(t) is taken to be almost periodic: 

- dt lim dtoP(t+to,  to;N ) 
T ~  T T o ~  TO 

= lim -1 [r dt [ dff(~)P(t, O; 4) (2.14) 
T~oc T J o  JM.~ 

[To be precise, what has been shown in ref. 4 is the almost-periodicity of 
P(t, 0; N) in t which allows one to extend this function onto the hull as 
P(t, 0; 4) with s e Mx,  but the expression involving the Haar measure /~ 
does not appear there.] Thus, it allows us to take the limit of "infinite past 
to--* - w "  even if the limit state lira,0_ _~ cotj o c%., itself does not exist [as 
in the case of oscillating perturbation X(t) without the damping factor for 
adiabatic switching control]. As for the final time averaging limit, 
l i m T ~ ( 1 / T  ) ~2dt, however, it is not uniquely determined in general, and 
we need to choose some suitable subsequence (T,),~ ~ tending to + oo, the 
existence of which is ensured by Markov-Kakutani  fixed-point theorem. (~6) 

At the end of this r6sum6 of ref. 4, we note that the (Abelian) group 
structure did not play an essential role in the above except for ensuring the 
uniqueness of the initial-time averaging limit identified with the Haar 
measure/~ on the hull Mx.  Since the compact hull can be associated with 
any bounded, uniformly continuous function being defined as the Gel'land 
spectrum of the commutative C*-algebra generated by its translates, ~7~ the 
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present setting can be extended to any external force N such that the 
dynamical system (C(Ms), ~r,) associated with it has a unique ergodic 
measure # on its hull Mx. 

3. REFORMULATION OF ENTROPY PRODUCTION IN 
ENLARGED DYNAMICAL SYSTEM 

3.1. Embedding of Time-Dependent Dynamics into 
Time-Independent Composite System 

With the aid of the hull Mx of external force ;~(t), we now reformulate 
the problem of external-force perturbation as the coupling between two 
physical systems, the microscopic object system (91, , , )  and the classical 
dynamical system (C(Mx), or) on the hull Mx. They are glued together 
through this coupling into a composite total system with time-independent 
dynamics as follows. (18)'4 

First, the algebra 23 of this composite system is defined by 

23 = C(Mx, 91) = 9.1 | C(Mx) (3.1) 

23 can be identified interchangeabty as the C*-atgebra of ~I-valued con- 
tinuous functions ~ ~ /3 ( r  on Mx or the tensor-product algebra of 9.1 with 
the commutative C*-algebra C(Mx) through the correspondence between 
~---~f(~)A and A |  for AE91 and f~C(Mx).  The algebra 91 of the 
original object system is embedded in 23 through the map t given by 

t: 91 ~ B~--~ B |  1 -~ t(B) ~ 23 (3.2) 

To define a composite dynarnics on this composite algebra 23, we 
extend the perturbed dynamics :~s,,;• given in (2.4) with parameter 
dependence on Z into :~s,,;~ with the variable r on the hull Mx. This is 
justified by the continuity of e,,,;• (ref. 4) with respect to N. It is easily seen 
that c~,,,;r satisfies the following two properties: 

:~s.t;~ o cq,,;r = ~s,,;~ (chain rule) (3.3) 

c~, + ;.,, + ~.;~ = ~,,t: ~_~ (covariance condition) (3.4) 

Then we can define a dynamics /~, on the algebra 23 of composite system 
by~8~ 

[/3,(/~)](r162 ,)) for /}E23 (3.5) 

4 The author is deeply indebted to Prof. J. Bellissard for his detailed and enlightening instruc- 
tions in this direction. 
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By virtue of (3.3) and (3.4), fl, is seen to be a time-independent dynamics 
satisfying the group property 

f i ~  o f i  , = f i  , + , (3.6) 

Due to the ergodicity (2.13) of #, we obtain for an arbitrary state co 
of 91 and/}  e 23 

lfo 
= lira dto co(c%,,+~,,;~(/~(~ . . . . .  ~)) (3.7) 

7b ~ oc, ~ 0 - - T  O 

which shows the equivalence of the Haar measure ~t with the initial time 
averaging procedure appearing in (2.8). Namely, the fictitious procedure of 
adiabatic switching with initial-time limit has been here replaced by an 
ergodic state g of the external force system. 

On the other hand, the problem concerning the final time limit is more 
complicated: Although both the initial states co~ and # are ergodic, respec- 
tively, for component dynamical systems (91, cq) and (C(Mx), a~), the 
product state o)~| is in general neither stationary nor ergodic with 
respect to the composite dynamical system (23, fl,). Therefore, the discus- 
sion about the final time limit requires us to investigate the dynamical 
behavior of the state o)~| under the dynamics fl, of the total system. 

3.2. Entropy Product ion and Sta t ionar i ty  in 
Composi te  System 

For this purpose, it is convenient to introduce the GNS representa- 
tions (~, 55, s U, = exp iH~t) and (re,, L2(Mx, li),/l 1/2, V, = exp ira ) 
associated, respectively, with the states co s and g of the dynamical systems 
(9I, c~,) and (C(Mx), a,): 

o)r Tr(B)~2) for Be91 (3.8) 

55 = ~(91) f2 (cyclicity) (3.9) 

7c(c~t(B)) = U,~(B) U*; U, = exp iH~t; H~s = 0 (3.10) 

I~(f) = ~ d#(~) f(~) = (#1/2, ;r.(f)/z'/25 (3.11) 
~ M  X 

[ ~ ( f ) O ] ( ~ ) ~ f ( ~ ) O ( ~ )  for f ~ C ( M x )  , OeL2(Mx, li) (3.12) 

(V ,~ ) (~ ) -  ~(~_,); 7r,(a,f) = V ~ , ( f )  V*; V,=expitA (3.13) 
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Then, the dynamical system (~3, fl,) can be represented in the Hilbert space 
| LZ(Mx, ~) = L2(Mx, .~; #) of ~-valued L2-functions on (Mx, I~) as 

[ { (~ |  B e ~ ,  tp~L2(Mx,~;I  J) 

(3,14) 

(re @ gu)(flt(]~)) = eitH(r~ | gu)(JB) e ,tH (3.15) 

where the generator H is given by 

i 

(3.16) 

It is easy to see that the product state co~ | on the composite system 
~3 is a KMS state with respect to the decoupled dynamics ot,| ) =--s 
of the object system with the generator Hr174 and that the coupled 
dynamics fi, derives from it through the perturbation by the term 
H - H ~ | 1 7 4 1 7 4 1 7 4  in the generator. Through the 
replacement %,,;• ~ fi,, ~o~ -~ c%| ~o, ~ co~| o fi,, therefore, we can 
apply the formula (2.6) for the relative entropy to the composite system 
0 3 , fit) and obtain 

F't 

= fi Jo ds <.c2 | f /2 ,  em'[iH~| -~  | 

+ '/Z@ 7~u(/~ @ '~)] e--iHt~@# 1/2 ) 

=fl f~ds lim --1 f ~ dtocO#(~,o.s+,o;• ) 
TO ~ TO TO 

= lim dt o S(~o,+,01 qo,0=o)~) 
T O ~  - -T  O 

(3.17) 

The last two equalities are due to the ergodicity (3.7). Thus, we obtain 
a very simple expression for the mean entropy production P defined 
previously by (2.8) as follows: 

l 

=30(~| (3.18) 

where 0 is one of the limit stationary states to which the initial equilibrium 
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state cos| of the decoupled system (23, 5,) tends, being driven by the 
time-independent dynamics/7, of the coupled system: 

95 ~ n lim~o 1 ro T,,fo dt(o)n| (3.19) 

The stationarity of the state 95 under/7, is easily seen as follows: 

1(95oP,- 95)(D)1 

1 fo" dt [ ( o ~ |  - ( (~j~ |  --olim  rZ 

1 - (it (co s | ~ ) o / 7 , ( g )  

21sj 
< lira IIBII = 0  (3.20) 

rt ~ ::c T ~  

As already noted, the final-time limit in (3.19) involves some subtle 
points: Although the state co s on the object system (N, ~,) and the external- 
force system (C(Mx), a,) are ergodic, the composite system (23, fi,) or the 
state 95 on it may not be so in general, and the final-time average of the 
orbit co/3 | o fl, of the state co~ | along the dynamics /7, may not be 
uniquely determined. Since the state space on 23 is convex and weak*-com- 
pact, the Markov-Kakutani  theorem (16) guarantees the existence of a fixed 
point, which can be attained as a limit point of some subsequence with 
t = 7", tending to + oo. However, the resulting limit state 95 will be chang- 
ing depending upon the choice of such a subsequence. Therefore, there may 
exist many stationary states on (23, fl,) and the state (~ may be decomposed 
into the direct sum or integral of such stationary ergodic states. For further 
analysis of this problem, detailed information is required of the explicit 
structure of the dynamical system (0I, cq), but the general setting for the 
bifurcation problem in nonequilibrium stationarity should be formulated in 
the present framework as such a kind of ergodic decomposition. 

Now the formula (3.18) is naturally interpreted as the quantized non- 
linear version of Onsager's dissipation function, since it reduces to the 
product of the fluxes and the forces if the leading approximation is taken 
with respect to the correlations in the state 95 as well as the coupling terms 
in the dynamics /7, between the system 9.i and the external force system 
C(Mx). The relations of (3.18) with the Kubo formula will be discussed in 
the next section from the viewpoint of the van Hove limit. 
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4. STATIONARITY AND DISSIPATIVITY 

4.1. Object System As an Open Subsystem of 
Enlarged Total System 

With the aid of the notions of the hull Mx,  the Haar measure # on 
it, and the "time-independent shape" ~ of the time-dependent external 
force N(t), the problems concerning the initial- and final-time limits have 
been clearly separated in the expressions (3.18) and (3.19), not only at 
the technical level of limit procedures, but also at that of states and 
observables: In the original response-theoretic formulation, the physical 
meaning of the "adiabatic switching-on" process with the limit t o ~ -oo  
has been obscured in the complicated formulas, being kept only at the level 
of the heuristic arguments. On the contrary, it is explicitly formulated here 
as the initial state # of the dynamical system (C(Mx), at) of external force. 
The important role of this state # in generating the dissipativity will be 
made clear in the following. 

On the other hand, the problem concerning the final state is conden- 
sed in Eq. (3.19). While its stationarity is formulated there in the enlarged 
system (~3, fl,), we also need to know how the original object system 9.1 
behaves in this total system, in order to clarify what kind of physical 
system appears in the final long-time limit. For this purpose, it is necessary 
for us to control freely the shift of description levels between the 
microscopic total system with the uncontrollable "redundant" variables 
and the macroscopic observable subsystem of "relevant" variables. This can 
be achieved by the help of the embedding map ~ given in (3.2) in combina- 
tion with the following map /~ projecting out the variables in the total 
system ~3 onto its subsystem 9.1: 

fi: ~B~B~-~ fi(B)= fMxdl~(~) fl(~)~9.1 (4.1) 

It is easily seen that they satisfy the following relations: 

fi o 1 = Id~ 

(4.2) 

(4.3) 

In terms of these maps, the state ~b and the dynamics fl, on the total system 
~3 can be pulled back onto the object system 91 as follows: 

go = t*(~)-= qbo~ (4.4) 

~ , =_ ;Lo fl ,o  ~ (4.5) 
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As a conditional expectation characterized by the properties 

I~(t(B~)/~2/(B3)) = B1//(/~2) B3 (4.6) 

/i(/~*/?) ~>//(/~)*/~(/~) (4.7) 

/~ defined by (4.1) is a completely positive (CP) map preserving the 
positivity of the observables in the stronger sense than (4.7), 

~(/~*/~kj) >~0,  V(/~o.);~j., = ~ ~ ~ |  for VN~ N (4.8) 
k 1 j i ,  j ~  1 

where MN(C) is the algebra of complex N x N matrices and ~3 | M s ( C  ) ~-- 
MN(~3) is the algebra of matrices with each component in ~3. However, /~ 
is not a homomorphism between N and 9-[ preserving the multiplication 
law: 

~(AB) r  (4.9) 

Therefore, unless the coupling between the system 2l and the external force 
vanishes, the mapping ?~ defined by (4.5) is not an automorphism of 92, but 
a CP map which can transfer a pure state into a mixed state. In this sense, 
the system (92, V~) defines a dissipative dynamics, but, due to the "memory 
effect," it cannot satisfy in general the Markov property: 

7~oy,r (4.10) 

Therefore, contrary to the stationarity of the state ~b of the composite 
system (~3, fl,) shown in (3.20), the pullback state ~o on (21, ~,,) cannot be 
ensured straightforwardly to be stationary. 

4.2. Van Hove Limit As Adiabat ic  El imination 
of High Frequencies and Its Relat ion to 
Stat ionar i ty  and M a r k o v  Property 

To attain the nonequilibrium stationarity with positive entropy 
production, we note here the role of van Hove limir ~9,2~ in reducing the 
generalized master equation dragging memory effects to the Markovian 
master equation without memory. (21,22) Although this problem has been 
discussed traditionally in the context of the "downhill process" of return to 
equilibrium, which is just opposite to our "uphill process" aiming at non- 
equilibrium stationarity, the formulation of van Hove limit in terms of 
master equations seems to be quite useful here, at least for the qualitative 
understanding of the general relationships among scale changes, Markov 
property, and stationarity. 
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For this purpose, we introduce a (dimensionless) coupling parameter 
2 in the coupling Hamiltonian (2.1), 

Hz(t  ) = - & - ~ ( t )  ~ - 2 / ~ .  K(t) (4.11) 

which causes also a change in the third term of H in (3.16) as 

H~ - - n  | n , ( / l  | ~ )  --, - 2 n  | nu(& | ~ )  (4.12) 

Then, the van Hove limit means the limit procedure to let the time 
parameter t tend to infinity with the quantity )~2t = r fixed finite: 

t ~ o o  with 22t = r fixed (4.13) 

Using the embedding map t and the conditional expectation ~1, we 
define a "projection" operator Po picking up the subalgebra 91| in ~3 
and its complement P~ by 

t o / i  - P o  = p 2  ( 4 . 1 4 )  

P1 --- Id~ - Po = Pal (4.15) 

Then we can formulate (at least formally) the generalized master equation 
governing the non-Markovian dissipative dynamics 7, on 91 with t =  z/2 2, 
in the following two forms adapted to discussing the asymptotic behaviors 
of states ~0 and observables C, respectively: 

r f lr  u)/2 2 = q 0 - f o  du ds qooc~;)a + o/toad(N | ~ ) o p ~ o e  "~z 

o ad(A | R) o t o 7,/;2 (4.16) 

z f ( z  -- u)/). 2 
= C - I o  du oo ds (7~/;2o/~oad(A@R)oP1 oesZoad(A |  

x (e~/~!a +,(C)) (4.17) 

Here Z denotes the generator of the "renormalized" unperturbed dynamics 
given by 

d | ,=o Z = ~ a, - iAP 1 ad(N | ~ )  P1 (4.18) 

on the assumption that # ( ~ ) =  0. 
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Thus, we see that the validity of the Markov property in the van Hove 
limit (4.13) is ensured if the following two points are verified: (i) whether 
the upper end ( ~ -  u)/22 of the second integrals in the right-hand sides of 
(4.16) and (4.17) can be replaced by +oo,  

;(~ ,)/~2 fo+OO ds ~.-772~o ds (4.19) 
0 

and (ii)(adiabatic elimination of microscopic rapid motion) whether the 
factors ce~;) and a,/);+s can be absorbed by some conditions of "quasi- 
invariance" on the states (p and/or the observables C such as 

lim ~o o ce~7;J2 = (p for Vr > 0 (4.20) 
2 ~ 0  

lim c~,/)(C) = C for Vr > 0 (4.21) 
2 4 0  

If these approximations are valid, then the generalized master equation 
(4.16)-(4.17) will be reduced to the Markovian master equation for 
~ - Y~/x 2 with r ~> 0 satisfying 

o7~+. = ~7~ o ~ (4.22) 

and hence the stationarity of the state will be attained for any asymptotic 
limit state of the form 

lim -1 dr ~o o y~ 

In the usual formulation of the master equation in the processes of 
return to equilibrium, the state q)o e~];) in (4.16)is replaced by the density 
matrix of the Gibbs state e ~I'~-HI, which obscures the relevance of the 
second problem (ii) of the adiabatic elimination of microscopic rapid 
motion in the infinite future time (r/;t 2 with 2 ~ 0, r ~> 0). Consequently, the 
natural meaning of van Hove limit has been lost, being taken only as a 
formal recipe to derive a Markovian stochastic dynamics. Taking account 
properly of the adiabatic elimination, however, we can interpret the 
van Hove limit in a more realistic way as a scale transformation controlling 
the change of  units between the two different times t =/micro and r = t . . . . .  

of the microscopic and macroscopic levels: 

22/micro = t . . . . . .  (4.23) 

If we take the microscopic time tm~or o finite in (4.23), the limit 2 -+ 0 takes 
us literally to the situation of weak coupling or approximate decoupling 
between the macroscopic external force ~ and the microscopic object 
system ~I, where we "observe" the purely dynamical motion of the latter 

822/56/1-2-15 
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with time tmi~ro- On the contrary, the situation of the van Hove limit (4.13) 
in combination with the adiabatic elimination (4.20)-(4.21) brings into 
focus the macroscopic level of state-changing process with finite time t . . . . .  - 
In spite of the small coupling parameter 2 --* 0, the effects of the coupling 
term (4.11) accumulate into macroscopically visible state changes through 
the infinite repetitions of "invisible" microscopic dynamical motions of high 
frequencies during the infinite time interval tmicr o = t . . . . .  /•2 __, oo, as is seen 
in (4.16)-(4.17). 

The physical basis of such an interpretation is that the notion of time 
emerges from the correlations among physical motions which are "fibered" 
into different levels with certain typical motions in each regime (i.e., 
different "standard clocks" at each size level), and hence that the standard 
scales of time differ from level to level according to the changes of the 
"standard physical motions." Such a scale transformation as (4.23) is just 
a "calibration" between different "clocks" belonging to different size 
regimes. In the idealization limit of 2 --* 0, simple approximate descriptions 
emerge as above for either the microscopic dynamical motions or macro- 
scopic state-changing processes, according to the choice between {tmio~ o = 
finite with t . . . . .  --* 0 } and { t . . . . .  = finite with tm~r o ~ OO }. This interpreta- 
tion leads to a natural reformulation of the Kubo formula in direct relation 
to entropy production in the next subsection. 

4.3. Entropy Production and van Hove Limit As Scale Change 

If we adopt the above physical viewpoint, the inverse temperature fl 
appearing in the mean entropy production P, (3.18), should also be trans- 
formed in parallel with the time (s) corresponding to the time-scale change 
(4.23): 

microscopic fl --* macroscopic 22fl -= flcfr (4.24) 

Therefore, we obtain the following expression for the mean entropy 
product ion/5  in van Hove limit (4.13): 

d 

1 d 2 ,:.=o 

1 
= ~ L j ( i ) (  j >~ 0 (4.25) 
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with L o defined by 
632 i 

L~; - fle~ OX i 63Xj ~bx(6(/~) @ 2 )  ~ =o (4.26) 

Here the ,iN dependence of the state ~b is made explicit as qS~x and we have 
used the simple facts that 

6~.~(,~ | 2)I~.=0 = (~o~ | # ) (6 (~ ) |  2 ) ) =  0 

and that the external force X is proportional to the coupling constant 2. 
In order to rewrite the formula (4.25) in a more convenient form, we 

utilize an integral equation for the state ~o~ | # o/;,, 

co~|174 d s c ~ l ~ | 1 7 4  ) (4.27) 

which follows from the expression (3.16) (with 2 inserted) of the 
infinitesimal generator of dynamics /~, together with the stationarity of the 
product state e)~ | # under the decoupled dynamics a t |  a,. From this we 
obtain another expression for the mean entropy production/5, 

p=/322 lira ~ 1 [To dt ( T , -  t ) (coa@U)(Efl , (6(~)@ 2),  i/~ @ 2 ] )  
T , , J o  

t 

x f dft(:) f [  dT X(~_,) .  co~(c~ j o . , : ~ ( S ) J ) - 2 ( : )  (4.28) 

If the initial equilibrium state (D~ satisfies the mixing property suppress- 
ing the long-time correlation in the form 

co~(c~,(J) J) = O(t -~ ~), e > 0  (4.29) 

it is easy to see that this formula can be approximated in the van Hove 
limit by the formula valid in the linear response regime 

/ 5 / < '  - -  ;o :~ f dg(~) ;. ~ o f l~  dt 

x f [ d v  ~(~_,) .~t~(~,_,~(J)J) . :~(s  ~=~,';.~ (4.30) 
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This can be checked by dividing the integral S~ "n into two parts, 

2--So +2 
with sufficiently large M > 0, and by estimating the contribution of the 
term - t / T ,  in view of (4.29). Further, when applied to the almost-periodic 
external force X given by 

X(t) = Z  X(OOk) e'~'---- X(t)* (4.31) 
k 

it reproduces the following result obtained in ref. 4, Eq. (5.15): 

P ~  ~err ~ (hOOk)ltanh(~errhOOk/2) 
~Ok >~ 0 

x ~ X/(ook) * Lu(OOk) X;(OOk) (4.32) 
i , j  

where the reality condition of ~(t), X(OOk)*= ?~(-ook), is used and the 
coefficient matrix {Lij(OOk)} is defined by 

Lij(OOk) = dr e'~ JJ}) 
- - o o  

= Gi(OOk)* = L , j ( -  ook)* (4.33) 

In view of the remark in ref. 3 on the relation between kinetic-theoretic 
approaches and linear-response theoretic ones toward the understanding 
of dissipativity, it would be interesting to consider here the problem of 
ordering consistency between stochastization and linearization: It is usually 
said ~2'3) that in the former case the stochastization procedure comes first, 
followed by linearization, and that it is just in the opposite order in the 
latter. Here in the above discussion of the master equation as one of the 
kinetic-theoretic approaches, the stochastization is due to the conditional 
expectation map /2, which induces a non-Markovian dissipative dynamics 
7t =/i~ ~ z governed by the generalized master equation (4.16), (4.17). To 
attain a genuine kinetic equation in the form of a Markovian master equa- 
tion, the adiabatic elimination mechanism of the van Hove limit to focus 
upon the state-changing processes is indispensable as a kind of "lineariza- 
tion" procedure. However, we can see, from such an expression as 

(o o ~ = (o o ( l i m  ~ o ~ / ~ 2  o t )  
2 ~ 0 i n i t i a l - t i m e  

f i n a l - t i m e  s t o c h a s t i z a t i o n  
l i n e a r i z a t i o n  

= l i m  (<o |  o ( [ ~ / ; 2  | a~/; .2]  - i o fl~/~2) o t 
,;- ~ 0 i n i t i a l  l i n e a r i z a t i o n  

a v e r a g e  
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that the "difference in the ordering" of the "stochastization" ,ti and the 
"linearization" 2 --* 0 is at most in their appearances of the same procedures 
viewed from the "Heisenberg picture" for observable dynamics and from the 
"Schr6dinger one" for state-changing dynamics, which are contragrediently 
related through the duality between algebras and states. 

Finally, we stress the intrinsic dynamical natures of the above two 
"procedures." First, the probability measure /~ on C(Mx) occupying the 
pivotal position responsible for the stochastization should not be taken as 
an adhoc device, but its origin should be traced to the ergodicity of the 
dynamics of the external force system which couples to the object system. 
Second, the validity of the van Hove limit as a level-transition mechanism 
requires the consistency between macroscopic stochasticity and the long- 
time asymptotic behaviors of the microscopic dynamics in such a form as 
the mixing property (4.29), which is of renormalization-group-theoretic 
nature in essence. Namely, the total dynamical system 03, fl,) should 
choose 2 = 0 as its infrared-stable fixed point for the consistency of our 
discussion. If 2 = oo is infrared-stable, on the contrary, the roles of tnmo 
and t . . . . .  should be just interchanged, and hence we would encounter the 
situation where the singular coupling limit ~23/'5 is relevant. 

5. N O N E Q U I L I B R I U M  A N D  I N H O M O G E N E O U S  S T R U C T U R E S .  
F A M I L Y  OF S T A T E S  A N D  G R O U P O I D  D Y N A M I C S  

Up to now, we have been concerned mainly with the formulation of 
stationarity. We discuss here some aspects of nonequilibrium states from 
the viewpoint of entropy production and their inhomogeneous internal 
structures. 

We first recall that in the zeroth law of thermodynamics the abstract 
physical characterization of temperature equilibrium is given as a stable 
contact relation between two physical systems constituting an equivalence 
relation and that the equivalence classes of this relation are just 
parametrized by the absolute temperatures T by taking the ideal gases as 
the standard reference systems. It is the transitivity of this equivalence 
relation that allows one to talk about a temperature equilibrium state of 
one physical system with no mention of another one (="reservoirs")  
constituting this binary relation. This well-known fact suggests the 
relevance of multiple-reservoir systems proposed by Lebowitz 16) to the 
nonequilibrium structures which negate equilibrium situations as an 
equivalence relation. As its simplest realization can be found in the classical 

5 See also the references cited in ref. 22. 
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Carnot cycle involving two heat baths at high and low temperatures, the 
notion of nonequilibrium states should encompass stationary cyclic 
processes, extending the classical thermodynamic notion of a state 
restricted by definition to the equilibrium. 

From this viewpoint of multiple-reservoir systems, the structure of the 
entropy production formula (4.32) for the almost-periodic external force 
seems to be quite interesting in the following reinterpretation. In view of 
the ergodicity of the dynamical system (C(Mx), a,, ~t), we can interpret the 
probability measure # as a microcanonical ensemble state on this classical 
system. Then, the asymptotic decouplings among different modes {c%} in 
the van Hove limit (4.13) allow us to attach to each frequency o)k a 
harmonic oscillator in a "local" canonical ensemble state embedded in the 
microcanonical ensemble /~. On the assumption of the "local" detailed 
balance, the corresponding "local" effective temperature T k will be given by 

1 1 
h ~ k = ~ k B r ~ = ~  ~ (5.1) 

Then the mean entropy production can be rewritten as 

k u/5 = ~ 1__ 2fieff tanh (tier k Tk \4/?kJ ~ xi(C~ Lu(e)k) XJ(~ 

= ~ - ( JQ/J t  . . . . .  )k > o 
Tk 

where 

(5.2) 

(AQ/At . . . . .  )k -- --2fi~n-tanh(flr ~ Xi(o)k) * Lo(cok) XJ(e)k) 
i , j  

(5.3) 

Thus, with the interpretation of - (AQ/At  . . . . .  )k as the rate of heat 
exchange at the kth "reservoir" with "local" temperature Tk, (5.2) gives 
the connection between the Clausius formula for entropy changes in 
thermodynamics and the mean entropy production 15 given response- 
theoretically in a quantum dynamical system prepared with temperature 
I/kBfl~, at infinite past. 

The inhomogeneous temperature distribution of the reservoir systems 
in (5.2) can be supplied not only by the spatial local configuration of heat 
baths, but also by such internal degrees of freedom as the mode differences 
in energy spectrum or the particle spectrum (as in the case of cosmological 
evolution processes). Although we have so far neglected these spatial and 
internal degrees of freedom, concentrating upon the time development of 
the system, it would be important to take them into account for the 
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satisfactory treatment of the nonequilibrium processes of quantum dynami- 
cal systems. For this purpose, we add here a few comments on the 
relevance of Connes' noncommutative integration theory (8~ and groupoid 
dynamical systems (7) to the present context. Since our external force N(t), 
not necessarily periodic, gives rise to an ergodic system (C(Mx) ,  a,) on its 
hull M x ,  the groupoid approach is particularly relevant to us in its relation 
to Mackey's virtual group, ~24~ which arises in the situation that the group 
action is ergodic but not transitive. It may be interesting in this context to 
note that for N(t) having two frequencies co I and co 2 with an irrational 
ratio 0 - a)l/e) 2 ( < 1) the crossed product C(Mx) ~ N of the external force 
system becomes (stably isomorphic to) the irrational rotation algebra 
Ao, ~25'261 and that the parameter 0 can be related to the efficiency t 1 of the 
Carnot cycle through t 1 = 1 - 0  = 1 -c91/c02 = ( T 2 -  T1 )IT2. 

Now we note that, in view of the covariance condition (3.4), the time- 
inhomogeneous dynamics c~0,,; ~ on 9.I can be interpreted as a representation 
o f  a groupoid F =- ~ x ~. M x associated with the action 2 of ~ on M x. The 
multiplication law of this groupoid F is defined for any pairs ~ - (tl, ~1) 
and 72 - (t2, d.2) satisfying 2 ,1(~1) = ~2 by 

( t l ,  ~-1)" (t2, ~2) = ( t l  -1- t2, ~1) (5.4)  

and the hull M x  can be identified with the space F ~~ = {0} x M x  of units 
of F with respect to this multiplication. Each groupoid element 7 = (t, ~) 
can be interpreted as a shift by t from its source s(7 ) =- 2_,(~) to its target 
r ( 7 ) - r  in F I~ Then, by denoting ~o,t;r with ~ = ( t , r  the 
covariance condition (3.4) together with the chain rule (3.3) yields the 
relation 

%, o ~,~ = c~,~1 ;,~ (5.5) 

which defines a groupoid dynamical system (9.1, :~., F). Iv) 
Now, the construction (3.5) of the composite dynamics /~, can be 

properly viewed from the more general context as follows. Let O1, c~, F) 
denote a C*-groupoid dynamical system with a groupoid F = G x ~ M  
associated with an action 2 of a locally compact group G on a locally com- 
pact manifold M, in which the groupoid product is defined by 71 "72 = 
(g l  g2,  ~1) for any pair ~31 = (gl ,  ~1), )~2 = (g2,  ~2) ~: G x M satisfying 

s(71) = 2g,~(~1) = {2 = r(72) 

Then this groupoid dynamical system is in a canonical correspondence 
with a C*-dynamical system (~3 _= 96 | Co(M), fl, G) in the sense that their 
crossed products od ,~ F and ~ >~ G are isomorphic, ~7/where the dynamics 
fig on ~3 is defined by 

[flg(B)](4)=-C~lg.r ,(~)), for / ? e ~  (5.6) 
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Our definition (3.5) of the time-independent composite dynamics/3, is just 
a special case of the dynamics /3 on G for G = N. Thus, this formulation 
allows us to incorporate the spatial as well as internal degrees of freedom 
with suitable choices of the "gauge group" G and the "internal and external 
spacetime" M. 

We note further that the Haar measures d v ~ - d t  and A ~=#  on the 
group G = ~ and the hull space M = M x  constitute, respectively, a trans- 
verse function and a transverse measure in Connes' noncommutative 
integration theory (8) on the groupoid F =  N x~. Mx: 

f dl~(~.) dvr f ( y )  A ( f )  = (A,,o v ) ( f )  = Jr~0 ' 
F~ 

= d~(~) dt f(t, ~) 
x - o c ,  

(5.7) 

It seems interesting to note that the formula (2.14) or (3.18) for the 
mean entropy production P can be rewritten as 

P = f l  lim f 
n ~ o ~  M y  

f ~  Z[o, ro](t) x - ~  dt co,(c%,:;r ~(~_ , )  T, 

=/3 lim f d~(~) 

KMx• Eo.r.l(~) 
• fr~ dv~(~) o~(~.~(~(~))(~o s)(v) 

A(KMx T , ] )  x [o, 

= l i ~  f d,(~) f d~(~) ~ ~  ~'~(/3~(~))'L(7) ~*(~)(~) (5.S) 

where Ks denotes the characteristic function of a set S: Ks(X) = 1 or 0 accor- 
ding as x ~ S  or not, and s is a source mapping F ~ ? - - ( t , ~ ) ~ - ~ s ( 7 ) -  
)o ,(~). The func t ionf ,  defined by 

f . (7)  - f . ( t ,  ~) = )~M~• EO. T.1(Y)/T. (5.9) 

plays the role of a normalized test function. 
We note here that the composite state ~b on ~B can be decomposed into 

its "component states" ~or on 9.1 as 
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with ~pr defined by 

'2 q)r .~lim ~ dt o a o  C~o,,;r (5.11) 

Then these q)r are easily seen to satisfy Bellissard's condit ion list for the 
s tat ionari ty  of ~b formula ted  in terms of f a m i l y  o f  states on the object 
system 9,1, 

q0~ = cpr o ~o,,; r (5.12) 

which can be viewed as the equivariance condit ion in the groupoid  
notat ion:  

(Pr(T) = (,0s(T) o ~;,-i = ~ - I  q)s(7} (5.~3) 

Since the role of the transverse measure/~  consists in the averaging over the 
fluctuating " r andom variables"  ~ which per turb  the dynamics,  this kind of 
reformulat ion will clarify the p roper  connect ions of our  present  setup with 
various "adiabat ic  theorems ''126'27) related to the "Berry phase"  as well as 
the stochastic process approaches3  281 Invest igat ion along these lines will be 
repor ted  elsewhere. 
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